Search results
Results from the WOW.Com Content Network
The Himalayan tectonics result in long term deformation. This includes shortening across the Himalayas that range from 900 to 1,500 km. Said shortening is a product of the significant ongoing seismic activity. The continued convergence of the Indian plate with the Eurasian plate results in mega earthquakes.
In the heart of Asia, deep underground, two huge tectonic plates are crashing into each other — a violent but slow-motion bout of geological bumper cars that over time has sculpted the soaring ...
A hypothetical lost oceanic plate called the Kshiroda Plate is supposed to have existed between the two subduction zones. It is now believed that this oceanic plate is actually a broken-off fragment of the above mentioned "Neo-Tethys oceanic basin". The bed of the Tethys sea lay on the Kshiroda Plate and was carried along with it towards Eurasia.
Satellite image of the Himalayas Spatial arrangement of the Himalayan tectonostratigraphic zones. Modified from N.R. McKenzie et al 2011 [1]. Pre-collisional Himalaya is the arrangement of the Himalayan rock units before mountain-building processes resulted in the collision of Asia and India.
Crustal thickening has an upward component of motion and often occurs when continental crust is thrust onto continental crust. Basically nappes (thrust sheets) from each plate collide and begin to stack one on top of the other; evidence of this process can be seen in preserved ophiolitic nappes (preserved in the Himalayas) and in rocks with an inverted metamorphic gradient.
The continental crust on the downgoing plate is deeply subducted as part of the downgoing plate during collision, defined as buoyant crust entering a subduction zone. An unknown proportion of subducted continental crust returns to the surface as ultra-high pressure (UHP) metamorphic terranes, which contain metamorphic coesite and/or diamond plus or minus unusual silicon-rich garnets and/or ...
Main Menu. News. News
The Himalayan river systems arise from three major sources–high altitude lakes and springs north of the Himalayas which give rise to rivers like Indus, Brahmaputra, and Satluj, Himalayan glaciers serving as the source for rivers like Ganges, Yamuna, Chenab and Ravi, and the lakes and streams in the lower Himalayas giving rise to non-perennial ...