Search results
Results from the WOW.Com Content Network
The North geomagnetic pole (Ellesmere Island, Nunavut, Canada) actually represents the South pole of Earth's magnetic field, and conversely the South geomagnetic pole corresponds to the north pole of Earth's magnetic field (because opposite magnetic poles attract and the north end of a magnet, like a compass needle, points toward Earth's South ...
A rendering of the magnetic field lines of the magnetosphere of the Earth. In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. [1] [2] It is created by a celestial body with an active interior dynamo.
Schematic of Earth's magnetosphere, showing the relative position of the magnetosheath. Scientific research into the exact nature of the magnetosheath has been limited due to a longstanding misconception that it was a byproduct of the bow shock/magnetopause interaction and had no inherently important properties of its own.
If the pressure from particles within the magnetosphere is neglected, it is possible to estimate the distance to the part of the magnetosphere that faces the Sun.The condition governing this position is that the dynamic ram pressure from the solar wind is equal to the magnetic pressure from the Earth's magnetic field: [note 1] (()) where and are the density and velocity of the solar wind, and ...
The dynamo theory describes the process through which a rotating, convecting, and electrically conducting fluid can maintain a magnetic field over astronomical time scales. A dynamo is thought to be the source of the Earth's magnetic field and the magnetic fields of Mercury and the Jovian planets .
These eddies develop a magnetic field which boosts Earth's original magnetic field—a process which is self-sustaining and is called the geomagnetic dynamo. [19] Reversals of Earth's magnetic field. Based on the MHD equations, Glatzmaier and Paul Roberts have made a supercomputer model of the Earth's interior.
The primary agent driving these processes is the movement of Earth's tectonic plates, which creates mountains, volcanoes, and ocean basins. The inner core of the Earth contains liquid iron, which is an important factor in the geosphere as well as the magnetosphere. [3]
Schematic view of the different current systems which shape the Earth's magnetosphere Trapping of plasma , e.g. of the ring current , also follows the structure of field lines. A particle interacting with this B field experiences a Lorentz Force which is responsible for many of the particle motion in the magnetosphere.