enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logistic map - Wikipedia

    en.wikipedia.org/wiki/Logistic_map

    However, equation (3-11) is a 16th-order equation, and even if we factor out the four solutions for the fixed points and the 2-periodic points, it is still a 12th-order equation. Therefore, it is no longer possible to solve this equation to obtain an explicit function of a that represents the values of the 4-periodic points in the same way as ...

  3. Tent map - Wikipedia

    en.wikipedia.org/wiki/Tent_map

    If μ is greater than 1 the system has two fixed points, one at 0, and the other at μ/(μ + 1). Both fixed points are unstable, i.e. a value of x close to either fixed point will move away from it, rather than towards it. For example, when μ is 1.5 there is a fixed point at x = 0.6 (since 1.5(1 − 0.6) = 0.6) but starting at x = 0.61 we get

  4. Hénon map - Wikipedia

    en.wikipedia.org/wiki/Hénon_map

    The unstable manifold of the fixed point in the attractor is contained in the strange attractor of the Hénon map. The Hénon map does not have a strange attractor for all values of the parameters a and b. For example, by keeping b fixed at 0.3 the bifurcation diagram shows that for a = 1.25 the Hénon map has a stable periodic orbit as an ...

  5. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A map from this sphere to a unit sphere of dimension n − 1 can be constructed by dividing each vector on this sphere by its length to form a unit length vector, which is a point on the unit sphere S n−1. This defines a continuous map from S to S n−1. The index of the vector field at the point is the degree of this map. It can be shown ...

  6. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...

  7. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.

  8. Trajectory - Wikipedia

    en.wikipedia.org/wiki/Trajectory

    In control theory, a trajectory is a time-ordered set of states of a dynamical system (see e.g. Poincaré map). In discrete mathematics , a trajectory is a sequence ( f k ( x ) ) k ∈ N {\displaystyle (f^{k}(x))_{k\in \mathbb {N} }} of values calculated by the iterated application of a mapping f {\displaystyle f} to an element x {\displaystyle ...

  9. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    The Gauss map provides a mapping from every point on a curve or a surface to a corresponding point on a unit sphere. In this example, the curvature of a 2D-surface is mapped onto a 1D unit circle. In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the ...