enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    The knapsack problem, though NP-Hard, is one of a collection of algorithms that can still be approximated to any specified degree. This means that the problem has a polynomial time approximation scheme. To be exact, the knapsack problem has a fully polynomial time approximation scheme (FPTAS). [26]

  3. List of knapsack problems - Wikipedia

    en.wikipedia.org/wiki/List_of_knapsack_problems

    The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.

  4. Fully polynomial-time approximation scheme - Wikipedia

    en.wikipedia.org/wiki/Fully_polynomial-time...

    Indeed, this problem does not have an FPTAS unless P=NP. The same is true for the two-dimensional knapsack problem. The same is true for the multiple subset sum problem: the quasi-dominance relation should be: s quasi-dominates t iff max(s 1, s 2) ≤ max(t 1, t 2), but it is not preserved by transitions, by the same example as above. 2.

  5. Generalized assignment problem - Wikipedia

    en.wikipedia.org/wiki/Generalized_assignment_problem

    For the problem variant in which not every item must be assigned to a bin, there is a family of algorithms for solving the GAP by using a combinatorial translation of any algorithm for the knapsack problem into an approximation algorithm for the GAP. [3]

  6. Polynomial-time approximation scheme - Wikipedia

    en.wikipedia.org/wiki/Polynomial-time...

    A practical problem with PTAS algorithms is that the exponent of the polynomial could increase dramatically as ε shrinks, for example if the runtime is O(n (1/ε)!One way of addressing this is to define the efficient polynomial-time approximation scheme or EPTAS, in which the running time is required to be O(n c) for a constant c independent of ε.

  7. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    NP-complete problems are often addressed by using heuristic methods and approximation algorithms. ... Knapsack problem; ... This is an example of a problem that is ...

  8. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Knapsack problem, quadratic knapsack problem, and several variants [2] [3]: MP9 Some problems related to Multiprocessor scheduling; Numerical 3-dimensional matching [3]: SP16 Open-shop scheduling; Partition problem [2] [3]: SP12 Quadratic assignment problem [3]: ND43 Quadratic programming (NP-hard in some cases, P if convex)

  9. Karp's 21 NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/Karp's_21_NP-complete_problems

    Karp's 21 problems are shown below, many with their original names. The nesting indicates the direction of the reductions used. For example, Knapsack was shown to be NP-complete by reducing Exact cover to Knapsack. Satisfiability: the boolean satisfiability problem for formulas in conjunctive normal form (often referred to as SAT)