Search results
Results from the WOW.Com Content Network
This can be seen in the following tables, the left of which shows Newton's method applied to the above f(x) = x + x 4/3 and the right of which shows Newton's method applied to f(x) = x + x 2. The quadratic convergence in iteration shown on the right is illustrated by the orders of magnitude in the distance from the iterate to the true root (0,1 ...
One particular solution is x = 0, y = 0, z = 0. Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates, and this plane is the set of all points whose coordinates are solutions of the equation.
If the constant term a 4 = 0, then one of the roots is x = 0, and the other roots can be found by dividing by x, and solving the resulting cubic equation, a 0 x 3 + a 1 x 2 + a 2 x + a 3 = 0. {\displaystyle a_{0}x^{3}+a_{1}x^{2}+a_{2}x+a_{3}=0.\,}
For solving the cubic equation x 3 + m 2 x = n where n > 0, Omar Khayyám constructed the parabola y = x 2 /m, the circle that has as a diameter the line segment [0, n/m 2] on the positive x-axis, and a vertical line through the point where the circle and the parabola intersect above the x-axis.
That is, h is the x-coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h), and k is the minimum value (or maximum value, if a < 0) of the quadratic function. One way to see this is to note that the graph of the function f ( x ) = x 2 is a parabola whose vertex is at the origin (0, 0).
Mathomatic [2] is a free, portable, general-purpose computer algebra system (CAS) that can symbolically solve, simplify, combine and compare algebraic equations, and can perform complex number, modular, and polynomial arithmetic, along with standard arithmetic.
ISBN 0-521-55376-8 (hardback), ISBN 0-521-55655-4 (paperback). (Textbook, targeting advanced undergraduate and postgraduate students in mathematics, which also discusses numerical partial differential equations.) John Denholm Lambert, Numerical Methods for Ordinary Differential Systems, John Wiley & Sons, Chichester, 1991. ISBN 0-471-92990-5.
If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.