Search results
Results from the WOW.Com Content Network
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
the Add method, which adds a key and value and throws an exception if the key already exists in the dictionary; assigning to the indexer, which overwrites any existing value, if present; and assigning to the backing property of the indexer, for which the indexer is syntactic sugar (not applicable to C#, see F# or VB.NET examples).
The procedure begins by examining the key; null denotes the arrival of a terminal node or end of a string key. If the node is terminal it has no children, it is removed from the trie (line 14). However, an end of string key without the node being terminal indicates that the key does not exist, thus the procedure does not modify the trie.
A small phone book as a hash table. In computer science, a hash table is a data structure that implements an associative array, also called a dictionary or simply map; an associative array is an abstract data type that maps keys to values. [3]
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
This makes it attractive in situations where the associated data is small (e.g. a few bits) compared to the keys because we can save a lot by reducing the space used by keys. To give a simple example suppose n {\displaystyle n} video game names annotated with a boolean indicating whether the game contains a dog that can be petted are given.
Parse tree of Python code with inset tokenization. The syntax of textual programming languages is usually defined using a combination of regular expressions (for lexical structure) and Backus–Naur form (a metalanguage for grammatical structure) to inductively specify syntactic categories (nonterminal) and terminal symbols. [7]
The erase–remove idiom cannot be used for containers that return const_iterator (e.g.: set) [6] std::remove and/or std::remove_if do not maintain elements that are removed (unlike std::partition, std::stable_partition). Thus, erase–remove can only be used with containers holding elements with full value semantics without incurring resource ...