Search results
Results from the WOW.Com Content Network
In physics, thermal contact conductance is the study of heat conduction between solid or liquid bodies in thermal contact. The thermal contact conductance coefficient, , is a property indicating the thermal conductivity, or ability to conduct heat, between two bodies in contact. The inverse of this property is termed thermal contact resistance.
The SI unit of absolute thermal resistance is kelvins per watt (K/W) or the equivalent degrees Celsius per watt (°C/W) – the two are the same since the intervals are equal: ΔT = 1 K = 1 °C. The thermal resistance of materials is of great interest to electronic engineers because most electrical components generate heat and need to be cooled.
The resistance of each material to heat transfer depends on the specific thermal resistance [R-value]/[unit thickness], which is a property of the material (see table below) and the thickness of that layer. A thermal barrier that is composed of several layers will have several thermal resistors in the analogous with circuits, each in series ...
Contact resistance may vary with temperature. It may also vary with time (most often decreasing) in a process known as resistance creep. Electrical contact resistance is also called interface resistance, transitional resistance, or the correction term. Parasitic resistance is a more general term, of which it is usually assumed that contact ...
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
Perfect thermal isolation is an idealization as real systems are always in thermal contact with their environment to some extent. When two solid bodies are in contact, a resistance to heat transfer exists between the bodies. The study of heat conduction between such bodies is called thermal contact conductance (or thermal contact resistance).
These thermal greases have low electrical conductivity and their volume resistivities are 1.5⋅10 15, 1.8⋅10 11, and 9.9⋅10 9 Ω⋅cm for 860, 8616 and 8617 respectively. The thermal grease 860 is a silicone oil with a Zinc Oxide filler and 8616 and 8617 are synthetic oils with various fillers including Aluminum Oxide and Boron Nitride.
Now, thermal gradients within the sphere become important, even though the sphere material is a good conductor. Equivalently, if the sphere is made of a poorly conducting (thermally insulating) material, such as wood or styrofoam, the interior resistance to heat flow will exceed that of convection at the fluid/sphere boundary, even for a much ...