enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    Examples of functions that are not entire include the square root, the logarithm, the trigonometric function tangent, and its inverse, arctan. For these functions the Taylor series do not converge if x is far from b. That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor ...

  3. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    To find a second-order approximation for the covariance of functions of two random variables (with the same function applied to both), one can proceed as follows.

  4. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    Download as PDF; Printable version; ... for example, in solutions of the ... which converges more rapidly for all real values of x than a Taylor expansion, ...

  5. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    The Taylor expansion would be: + where / denotes the partial derivative of f k with respect to the i-th variable, evaluated at the mean value of all components of vector x. Or in matrix notation , f ≈ f 0 + J x {\displaystyle \mathrm {f} \approx \mathrm {f} ^{0}+\mathrm {J} \mathrm {x} \,} where J is the Jacobian matrix .

  6. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    Now its Taylor series centered at z 0 converges on any disc B(z 0, r) with r < |z − z 0 |, where the same Taylor series converges at z ∈ C. Therefore, Taylor series of f centered at 0 converges on B(0, 1) and it does not converge for any z ∈ C with |z| > 1 due to the poles at i and −i.

  7. Linearization - Wikipedia

    en.wikipedia.org/wiki/Linearization

    The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. [1]

  8. Analytic function of a matrix - Wikipedia

    en.wikipedia.org/wiki/Analytic_function_of_a_matrix

    In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size.. This is used for defining the exponential of a matrix, which is involved in the closed-form solution of systems of linear differential equations.

  9. Inverse gamma function - Wikipedia

    en.wikipedia.org/wiki/Inverse_Gamma_function

    Series expansion [ edit ] To obtain a series expansion of the inverse gamma function one can first compute the series expansion of the reciprocal gamma function 1 Γ ( x ) {\displaystyle {\frac {1}{\Gamma (x)}}} near the poles at the negative integers, and then invert the series.