Search results
Results from the WOW.Com Content Network
Huffman tree generated from the exact frequencies of the text "this is an example of a huffman tree". Encoding the sentence with this code requires 135 (or 147) bits, as opposed to 288 (or 180) bits if 36 characters of 8 (or 5) bits were used (This assumes that the code tree structure is known to the decoder and thus does not need to be counted as part of the transmitted information).
The normal Huffman coding algorithm assigns a variable length code to every symbol in the alphabet. More frequently used symbols will be assigned a shorter code. For example, suppose we have the following non-canonical codebook: A = 11 B = 0 C = 101 D = 100 Here the letter A has been assigned 2 bits, B has 1 bit, and C and D both have 3 bits.
Modified Huffman coding is used in fax machines to encode black-on-white images . It combines the variable-length codes of Huffman coding with the coding of repetitive data in run-length encoding . The basic Huffman coding provides a way to compress files with much repeating data, like a file containing text, where the alphabet letters are the ...
An entropy coding attempts to approach this lower bound. Two of the most common entropy coding techniques are Huffman coding and arithmetic coding. [2] If the approximate entropy characteristics of a data stream are known in advance (especially for signal compression), a simpler static code may be useful.
Adaptive Huffman coding (also called Dynamic Huffman coding) is an adaptive coding technique based on Huffman coding. It permits building the code as the symbols are being transmitted, having no initial knowledge of source distribution, that allows one-pass encoding and adaptation to changing conditions in data.
Second and third bits: Encoding method used for this block type: 00: A stored (a.k.a. raw or literal) section, between 0 and 65,535 bytes in length; 01: A static Huffman compressed block, using a pre-agreed Huffman tree defined in the RFC; 10: A dynamic Huffman compressed block, complete with the Huffman table supplied; 11: Reserved—don't use.
Huffman coding is a more sophisticated technique for constructing variable-length prefix codes. The Huffman coding algorithm takes as input the frequencies that the code words should have, and constructs a prefix code that minimizes the weighted average of the code word lengths. (This is closely related to minimizing the entropy.)
Huffman coding – Entropy encoding, pairs well with other algorithms; Lempel-Ziv compression (LZ77 and LZ78) – Dictionary-based algorithm that forms the basis for many other algorithms Deflate – Combines LZ77 compression with Huffman coding, used by ZIP, gzip, and PNG images