Search results
Results from the WOW.Com Content Network
The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set.
Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes. There are many equivalent formulations of the axioms of Zermelo–Fraenkel set theory. Most of the axioms state the existence of particular sets defined from other sets.
In 1908, Zermelo succeeded in producing an improved proof making use of Dedekind's notion of the "chain" of a set, which became more widely accepted; this was mainly because that same year he also offered an axiomatization of set theory. Zermelo began to axiomatize set theory in 1905; in 1908, he published his results despite his failure to ...
The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also Axiom of choice § Equivalents). [1] [2] Ernst Zermelo introduced the axiom of choice as an "unobjectionable logical principle" to prove the well-ordering theorem. [3]
Together with the axiom of choice (see below), these are the de facto standard axioms for contemporary mathematics or set theory. They can be easily adapted to analogous theories, such as mereology. Axiom of extensionality; Axiom of empty set; Axiom of pairing; Axiom of union; Axiom of infinity; Axiom schema of replacement; Axiom of power set ...
The axiom schema of replacement is not necessary for the proofs of most theorems of ordinary mathematics. Indeed, Zermelo set theory (Z) already can interpret second-order arithmetic and much of type theory in finite types, which in turn are sufficient to formalize the bulk of mathematics.
Zermelo set theory, which replaces the axiom schema of replacement with that of separation; General set theory, a small fragment of Zermelo set theory sufficient for the Peano axioms and finite sets; Kripke–Platek set theory, which omits the axioms of infinity, powerset, and choice, and weakens the axiom schemata of separation and replacement.
Furthermore, one sometimes considers set theories in which there are no infinite sets, and then the axiom of empty set may still be required. However, any axiom of set theory or logic that implies the existence of any set will imply the existence of the empty set, if one has the axiom schema of separation. This is true, since the empty set is a ...