Search results
Results from the WOW.Com Content Network
Download as PDF; Printable version; ... A sample of thorium. The thorium fuel cycle is a nuclear fuel cycle that ... Fact sheet on thorium Archived 2013-02-16 at the ...
A sample of thorium. Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium.A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle [Note 1] —including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced ...
Download as PDF; Printable version; In other projects ... Transmutations in the thorium fuel cycle. 237 Np: ↑ 231 U: ← 232 U ↔ 233 U ↔ 234 U ↔ 235 U: ↔ ...
Thorium-232 is a fertile material; it can capture a neutron to form thorium-233, which subsequently undergoes two successive beta decays to uranium-233, which is fissile. As such, it has been used in the thorium fuel cycle in nuclear reactors; various prototype thorium-fueled reactors have been designed. However, as of 2024, thorium fuel has ...
The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end , which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end , which are necessary to safely ...
Download as PDF; Printable version; ... move to sidebar hide. From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Thorium fuel cycle; Retrieved from ...
232 Th is a fertile material able to absorb a neutron and undergo transmutation into the fissile nuclide uranium-233, which is the basis of the thorium fuel cycle. [56] In the form of Thorotrast, a thorium dioxide suspension, it was used as a contrast medium in early X-ray diagnostics. Thorium-232 is now classified as carcinogenic. [57]
In the thorium cycle, thorium-232 breeds by converting first to protactinium-233, which then decays to uranium-233. If the protactinium remains in the reactor, small amounts of uranium-232 are also produced, which has the strong gamma emitter thallium-208 in its decay chain. Similar to uranium-fueled designs, the longer the fuel and fertile ...