Search results
Results from the WOW.Com Content Network
For a sample of n values, a method of moments estimator of the population excess kurtosis can be defined as = = = (¯) [= (¯)] where m 4 is the fourth sample moment about the mean, m 2 is the second sample moment about the mean (that is, the sample variance), x i is the i th value, and ¯ is the sample mean.
In the following, { x i } denotes a sample of n observations, g 1 and g 2 are the sample skewness and kurtosis, m j ’s are the j-th sample central moments, and ¯ is the sample mean. Frequently in the literature related to normality testing, the skewness and kurtosis are denoted as √ β 1 and β 2 respectively.
HOS are particularly used in the estimation of shape parameters, such as skewness and kurtosis, as when measuring the deviation of a distribution from the normal distribution. In statistical theory , one long-established approach to higher-order statistics, for univariate and multivariate distributions is through the use of cumulants and joint ...
a measure of the shape of the distribution like skewness or kurtosis; if more than one variable is measured, a measure of statistical dependence such as a correlation coefficient; A common collection of order statistics used as summary statistics are the five-number summary, sometimes extended to a seven-number summary, and the associated box plot.
In statistics, the Jarque–Bera test is a goodness-of-fit test of whether sample data have the skewness and kurtosis matching a normal distribution. The test is named after Carlos Jarque and Anil K. Bera. The test statistic is always nonnegative. If it is far from zero, it signals the data do not have a normal distribution.
A fat-tailed distribution is a probability distribution that exhibits a large skewness or kurtosis, relative to that of either a normal distribution or an exponential distribution. [ when defined as? ] In common usage, the terms fat-tailed and heavy-tailed are sometimes synonymous; fat-tailed is sometimes also defined as a subset of heavy-tailed.
Kurtosis risk applies to any kurtosis-related quantitative model that assumes the normal distribution for certain of its independent variables when the latter may in fact have kurtosis much greater than does the normal distribution. Kurtosis risk is commonly referred to as "fat tail" risk. The "fat tail" metaphor explicitly describes the ...
The expected Kurtosis for sample of IID standard normal data is 3 (see the wiki article on the normal distribution for more). We tend to refer to excess kurtosis as the sample kurtosis of a series -3 for that reason.. —Preceding unsigned comment added by 62.30.156.106 21:42, 14 March 2008 (UTC)