Search results
Results from the WOW.Com Content Network
Here's how to read an audiogram and a doctor's explanation of the most common results including sloping hearing loss, notched hearing loss, cookie-bite hearing loss and reverse-sloping hearing loss.
The result of the test is an audiogram diagram which plots a person's hearing sensitivity at the tested frequencies. On an audiogram an "x" plot represents the softest threshold heard at each specific frequency in the left ear, and an "o" plot represents the softest threshold heard at each specific frequency in the right ear.
The shape of the audiogram resulting from pure-tone audiometry gives an indication of the type of hearing loss as well as possible causes. Conductive hearing loss due to disorders of the middle ear shows as a flat increase in thresholds across the frequency range. Sensorineural hearing loss will have a contoured shape depending on the cause.
An audiogram is a graph that shows the audible threshold for standardized frequencies as measured by an audiometer. The Y axis represents intensity measured in decibels (dB) and the X axis represents frequency measured in hertz (Hz). [ 1 ]
The result of most audiometry is an audiogram plotting some measured dimension of hearing, either graphically or tabularly. The most common type of audiogram is the result of a pure tone audiometry hearing test which plots frequency versus amplitude sensitivity thresholds for each ear along with bone conduction thresholds at 8 standard ...
The speech banana is a banana-shaped region where the sounds of human languages appear on an audiogram. (An audiogram is a graphical representation of someone's ability to hear over a range of frequencies and loudness levels. Hearing on an audiogram is displayed as frequency in Hertz on the x-axis and loudness in decibels on the y-axis.)
A tone at the frequency of 4000 Hz is presented for 60 seconds at an intensity of 5 decibels above the patient's absolute threshold of hearing. If the patient stops hearing the tone before 60 seconds, the intensity level is increased by another 5 decibels with the procedure repeated until the tone can be heard for the full 60 seconds or until no decibel level can be found where the tone can be ...
The first research on the topic of how the ear hears different frequencies at different levels was conducted by Fletcher and Munson in 1933. Until recently, it was common to see the term Fletcher–Munson used to refer to equal-loudness contours generally, even though a re-determination was carried out by Robinson and Dadson in 1956, which became the basis for an ISO 226 standard.