Search results
Results from the WOW.Com Content Network
(room temperature) (alpha, polycrystalline) calculated from single crystal values 56.2 LNG (10 −8 Ωm) 56.2 WEL (10 −8 Ωm) (293 K–298 K) 55 22 Ti titanium; use 0.39 μΩm 0.420 μΩm CRC (10 −8 Ωm) 39 LNG (10 −8 Ωm) 42.0 WEL (10 −8 Ωm) (293 K–298 K) 40 23 V vanadium; use 24.1 nΩm 181 nΩm 197 nΩm 201 nΩm 202 nΩm 348 nΩm
Original data from the 1911 experiment by Heike Kamerlingh Onnes showing the resistance of a mercury wire as a function of temperature. The abrupt drop in resistance is the superconducting transition. The electrical resistivity of a metallic conductor decreases gradually as temperature is lowered.
Wire sized 1 AWG is referred to as "one gauge" or "No. 1" wire; similarly, thinner sizes are pronounced "x gauge" or "No. x" wire, where x is the positive-integer AWG number. Consecutive AWG wire sizes thicker than No. 1 wire are designated by the number of zeros: No. 0, often written 1/0 and referred to as "one-aught" or "single-aught" wire
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
The construction industry makes use of measures such as the R-value (resistance) and the U-value (transmittance or conductance). Although related to the thermal conductivity of a material used in an insulation product or assembly, R- and U-values are measured per unit area, and depend on the specified thickness of the product or assembly. [note 2]
Contact resistance values are typically small (in the microohm to milliohm range). Contact resistance can cause significant voltage drops and heating in circuits with high current. Because contact resistance adds to the intrinsic resistance of the conductors, it can cause significant measurement errors when exact resistance values are needed.
The resistance of a given conductor depends on the material it is made of, and on its dimensions. For a given material, the resistance is inversely proportional to the cross-sectional area. [1] For example, a thick copper wire has lower resistance than an otherwise-identical thin copper wire. Also, for a given material, the resistance is ...
Also, the size of the aluminum wire needs to be larger compared to copper wire used for the same circuit due to the increased resistance of the aluminum alloys. For example, a 15 A branch circuit supplying standard lighting fixtures can be installed with either #14 AWG copper building wire or #12 AWG aluminum building wire according to the NEC.