Search results
Results from the WOW.Com Content Network
A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers. [1] There are several kinds of means (or "measures of central tendency") in mathematics, especially in statistics.
Statistical purposes include estimating a population parameter, describing a sample, or evaluating a hypothesis. The average (or mean) of sample values is a statistic. The term statistic is used both for the function (e.g., a calculation method of the average) and for the value of the function on a given sample (e.g., the result of the average ...
In mathematics and statistics, the arithmetic mean (/ ˌ æ r ɪ θ ˈ m ɛ t ɪ k / arr-ith-MET-ik), arithmetic average, or just the mean or average (when the context is clear) is the sum of a collection of numbers divided by the count of numbers in the collection. [1]
Statistical inference is the process of using data analysis to deduce properties of an underlying probability distribution. [29] Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population.
Average of chords. In ordinary language, an average is a single number or value that best represents a set of data. The type of average taken as most typically representative of a list of numbers is the arithmetic mean – the sum of the numbers divided by how many numbers are in the list.
a measure of location, or central tendency, such as the arithmetic mean; a measure of statistical dispersion like the standard mean absolute deviation; a measure of the shape of the distribution like skewness or kurtosis; if more than one variable is measured, a measure of statistical dependence such as a correlation coefficient
The arithmetic mean of a population, or population mean, is often denoted μ. [2] The sample mean ¯ (the arithmetic mean of a sample of values drawn from the population) makes a good estimator of the population mean, as its expected value is equal to the population mean (that is, it is an unbiased estimator).
The mean for the trait may be nonrandom and determined by selection pressure, but the distribution of values around the mean reflects a normal statistical distribution. The population-genetic phenomenon studied by Galton is a special case of "regression to the mean"; the term is often used to describe many statistical phenomena in which data ...