Search results
Results from the WOW.Com Content Network
Insertion sort is widely used for small data sets, while for large data sets an asymptotically efficient sort is used, primarily heapsort, merge sort, or quicksort. Efficient implementations generally use a hybrid algorithm , combining an asymptotically efficient algorithm for the overall sort with insertion sort for small lists at the bottom ...
It combines the speed of insertion sort on small data sets with the speed of merge sort on large data sets. [8] To avoid having to make a series of swaps for each insertion, the input could be stored in a linked list, which allows elements to be spliced into or out of the list in constant time when the position in the list is known. However ...
enabling processing of data in a defined order. The opposite of sorting, rearranging a sequence of items in a random or meaningless order, is called shuffling . For sorting, either a weak order, "should not come after", can be specified, or a strict weak order , "should come before" (specifying one defines also the other, the two are the ...
It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions. [3] Quicksort is a divide-and-conquer algorithm. It works by selecting a 'pivot' element from the array and partitioning the other elements into two sub-arrays, according to ...
A polyphase merge sort is a variation of a bottom-up merge sort that sorts a list using an initial uneven distribution of sub-lists (runs), primarily used for external sorting, and is more efficient than an ordinary merge sort when there are fewer than eight external working files (such as a tape drive or a file on a hard drive).
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
Because sequencing generates a lot of data (for example, there are approximately six billion base pairs in each human diploid genome), its output is stored electronically and requires a large amount of computing power and storage capacity. While analysis of WGS data can be slow, it is possible to speed up this step by using dedicated hardware. [37]
A typical workflow of a peptide mass fingerprinting experiment. Peptide mass fingerprinting (PMF), also known as protein fingerprinting, is an analytical technique for protein identification in which the unknown protein of interest is first cleaved into smaller peptides, whose absolute masses can be accurately measured with a mass spectrometer such as MALDI-TOF or ESI-TOF. [1]