enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  3. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    The categorical distribution is the generalization of the Bernoulli distribution for variables with any constant number of discrete values. The Beta distribution is the conjugate prior of the Bernoulli distribution. [5] The geometric distribution models the number of independent and identical Bernoulli trials needed to get one success.

  4. Relationships among probability distributions - Wikipedia

    en.wikipedia.org/wiki/Relationships_among...

    The sum of n geometric random variables with probability of success p is a negative binomial random variable with parameters n and p. The sum of n exponential (β) random variables is a gamma (n, β) random variable. Since n is an integer, the gamma distribution is also a Erlang distribution. The sum of the squares of N standard normal random ...

  5. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    A Binomial distributed random variable X ~ B(n, p) can be considered as the sum of n Bernoulli distributed random variables. So the sum of two Binomial distributed random variables X ~ B(n, p) and Y ~ B(m, p) is equivalent to the sum of n + m Bernoulli distributed random variables, which means Z = X + Y ~ B(n + m, p). This can also be proven ...

  6. Poisson binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_binomial_distribution

    Since a Poisson binomial distributed variable is a sum of n independent Bernoulli distributed variables, its mean and variance will simply be sums of the mean and variance of the n Bernoulli distributions: = =

  7. Indecomposable distribution - Wikipedia

    en.wikipedia.org/wiki/Indecomposable_distribution

    The simplest examples are Bernoulli-distributions: if = {,, then the probability distribution of X is indecomposable. Proof: Given non-constant distributions U and V, so that U assumes at least two values a, b and V assumes two values c, d, with a < b and c < d, then U + V assumes at least three distinct values: a + c, a + d, b + d (b + c may be equal to a + d, for example if one uses 0, 1 and ...

  8. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    The component Bernoulli variables X i are identically distributed and independent. Prosaically, a Bernoulli process is a repeated coin flipping, possibly with an unfair coin (but with consistent unfairness). Every variable X i in the sequence is associated with a Bernoulli trial or experiment. They all have the same Bernoulli distribution.

  9. Multinomial distribution - Wikipedia

    en.wikipedia.org/wiki/Multinomial_distribution

    For example, it models the probability of counts for each side of a k-sided die rolled n times. For n independent trials each of which leads to a success for exactly one of k categories, with each category having a given fixed success probability, the multinomial distribution gives the probability of any particular combination of numbers of ...

  1. Related searches sum of bernoulli variables self study chart example with answers sheet excel

    bernoulli distribution modelbernoulli distribution wiki
    bernoulli distribution probabilitybernoulli distribution geometry