enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  3. Relationships among probability distributions - Wikipedia

    en.wikipedia.org/wiki/Relationships_among...

    The sum of n geometric random variables with probability of success p is a negative binomial random variable with parameters n and p. The sum of n exponential (β) random variables is a gamma (n, β) random variable. Since n is an integer, the gamma distribution is also a Erlang distribution. The sum of the squares of N standard normal random ...

  4. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    The categorical distribution is the generalization of the Bernoulli distribution for variables with any constant number of discrete values. The Beta distribution is the conjugate prior of the Bernoulli distribution. [5] The geometric distribution models the number of independent and identical Bernoulli trials needed to get one success.

  5. Indecomposable distribution - Wikipedia

    en.wikipedia.org/wiki/Indecomposable_distribution

    The simplest examples are Bernoulli-distributions: if = {,, then the probability distribution of X is indecomposable. Proof: Given non-constant distributions U and V, so that U assumes at least two values a, b and V assumes two values c, d, with a < b and c < d, then U + V assumes at least three distinct values: a + c, a + d, b + d (b + c may be equal to a + d, for example if one uses 0, 1 and ...

  6. Poisson binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_binomial_distribution

    Since a Poisson binomial distributed variable is a sum of n independent Bernoulli distributed variables, its mean and variance will simply be sums of the mean and variance of the n Bernoulli distributions: = =

  7. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    The component Bernoulli variables X i are identically distributed and independent. Prosaically, a Bernoulli process is a repeated coin flipping, possibly with an unfair coin (but with consistent unfairness). Every variable X i in the sequence is associated with a Bernoulli trial or experiment. They all have the same Bernoulli distribution.

  8. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    Nowadays, it can be seen as a consequence of the central limit theorem since B(n, p) is a sum of n independent, identically distributed Bernoulli variables with parameter p. This fact is the basis of a hypothesis test, a "proportion z-test", for the value of p using x/n, the sample proportion and estimator of p, in a common test statistic. [35]

  9. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]

  1. Related searches sum of bernoulli variables self study chart example with answers sheet blank

    bernoulli distribution modelbernoulli distribution probability
    bernoulli distribution wikibernoulli distribution geometry