Search results
Results from the WOW.Com Content Network
The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets = Which method is faster "by hand" depends on the fraction and the ease with which common factors are spotted.
Conversely the period of the repeating decimal of a fraction c / d will be (at most) the smallest number n such that 10 n − 1 is divisible by d. For example, the fraction 2 / 7 has d = 7, and the smallest k that makes 10 k − 1 divisible by 7 is k = 6, because 999999 = 7 × 142857. The period of the fraction 2 / 7 is ...
This method was used from the 1980s to the 1990s in BASIC programmable calculators and pocket computers. Texas Instruments would later implement the method in many of its graphing calculators, including the TI-83 and TI-84 Plus series. Most computer algebra systems (CASes) also use this as the default input method.
Another method is to perform the division only partially and retain the remainder. For example, 7 divided by 2 is 3 with a remainder of 1. These difficulties are avoided by rational number arithmetic, which allows for the exact representation of fractions. [75] A simple method to calculate exponentiation is by repeated
Approximating an irrational number by a fraction π: 22/7 1-digit-denominator Approximating a rational number by a fraction with smaller denominator 399 / 941 3 / 7 1-digit-denominator Approximating a fraction by a fractional decimal number: 5 / 3 1.6667: 4 decimal places: Approximating a fractional decimal number by one with fewer digits 2.1784
Expected fraction of population inside range Expected fraction of population outside range Approx. expected frequency outside range Approx. frequency outside range for daily event μ ± 0.5σ: 0.382 924 922 548 026: 0.6171 = 61.71 % 3 in 5 Four or five times a week μ ± σ: 0.682 689 492 137 086 [5] 0.3173 = 31.73 % 1 in 3 Twice or thrice a ...
Continued fractions are, in some ways, more "mathematically natural" representations of a real number than other representations such as decimal representations, and they have several desirable properties: The continued fraction representation for a real number is finite if and only if it is a rational number.
One way of calculating and is to use Heron's method, which is a special case of Newton's method, to find a solution for the equation =, giving the iterative formula + = (+),, > The sequence { x k } {\displaystyle \{x_{k}\}} converges quadratically to n {\displaystyle {\sqrt {n}}} as k → ∞ {\displaystyle k\to \infty } .