enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]

  3. Design of experiments - Wikipedia

    en.wikipedia.org/wiki/Design_of_experiments

    The same is true for intervening variables (a variable in between the supposed cause (X) and the effect (Y)), and anteceding variables (a variable prior to the supposed cause (X) that is the true cause). When a third variable is involved and has not been controlled for, the relation is said to be a zero order relationship. In most practical ...

  4. Quantitative structure–activity relationship - Wikipedia

    en.wikipedia.org/wiki/Quantitative_structure...

    It is well known for instance that within a particular family of chemical compounds, especially of organic chemistry, that there are strong correlations between structure and observed properties. A simple example is the relationship between the number of carbons in alkanes and their boiling points .

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...

  6. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    The curve shows the estimated probability of passing an exam (binary dependent variable) versus hours studying (scalar independent variable). See § Example for worked details. In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables.

  7. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Because the predictor variables are treated as fixed values (see above), linearity is really only a restriction on the parameters. The predictor variables themselves can be arbitrarily transformed, and in fact multiple copies of the same underlying predictor variable can be added, each one transformed differently.

  8. Regression dilution - Wikipedia

    en.wikipedia.org/wiki/Regression_dilution

    Regression dilution, also known as regression attenuation, is the biasing of the linear regression slope towards zero (the underestimation of its absolute value), caused by errors in the independent variable. Consider fitting a straight line for the relationship of an outcome variable y to a predictor variable x, and

  9. Mathematical model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_model

    Exogenous variables are sometimes known as parameters or constants. The variables are not independent of each other as the state variables are dependent on the decision, input, random, and exogenous variables. Furthermore, the output variables are dependent on the state of the system (represented by the state variables).