Search results
Results from the WOW.Com Content Network
The technique of the previous example may also be applied to other Dirichlet series. If a n = μ ( n ) {\displaystyle a_{n}=\mu (n)} is the Möbius function and ϕ ( x ) = x − s {\displaystyle \phi (x)=x^{-s}} , then A ( x ) = M ( x ) = ∑ n ≤ x μ ( n ) {\displaystyle A(x)=M(x)=\sum _{n\leq x}\mu (n)} is Mertens function and
Generating function – Formal power series; coefficients encode information about a sequence indexed by natural numbers; Perron's formula – Formula to calculate the sum of an arithmetic function in analytic number theory; Renormalization – Method in physics used to deal with infinities; 1 + 1 + 1 + 1 + ⋯ – Divergent series
In mathematics, summation by parts transforms the summation of products of sequences into other summations, often simplifying the computation or (especially) estimation of certain types of sums. It is also called Abel's lemma or Abel transformation, named after Niels Henrik Abel who introduced it in 1826. [1]
Instead, such a series must be interpreted by zeta function regularization. For this reason, Hardy recommends "great caution" when applying the Ramanujan sums of known series to find the sums of related series. [16]
Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Given a series a 0 + a 1 + a 2 + ⋯, one forms a new series a 0 + a 1 x + a 2 x 2 + ⋯. If the latter series converges for 0 < x < 1 to a function with a limit as x tends to 1, then this limit is called the Abel sum of the original series, after Abel's theorem which guarantees that the procedure is consistent with ordinary summation. For ...
In the mathematics of convergent and divergent series, Euler summation is a summation method. That is, it is a method for assigning a value to a series, different from the conventional method of taking limits of partial sums. Given a series Σa n, if its Euler transform converges to a sum, then that sum is called the Euler sum of the original ...