Search results
Results from the WOW.Com Content Network
Frequency-shift keying (FSK) Phase-shift keying (PSK) All convey data by changing some aspect of a base signal, the carrier wave (usually a sinusoid), in response to a data signal. In the case of PSK, the phase is changed to represent the data signal. There are two fundamental ways of utilizing the phase of a signal in this way:
Each symbol is encoded as a different phase shift of the carrier sine wave: 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°. A constellation diagram is a representation of a signal modulated by a digital modulation scheme such as quadrature amplitude modulation or phase-shift keying. [1]
A modified constellation diagram of 16-APSK. Typically 16-APSK will have 15 degree phase offset on the outer ring, which is not depicted here. Symbols can be easily distinguished from each other and, moreover, varying of the space between rings is a way to counteract transmission distortions. [4]
The common types of modulation that may be used with differential coding include phase-shift keying and quadrature ... A block diagram representation of a ...
An OFDM carrier signal is the sum of a number of orthogonal subcarriers, with baseband data on each subcarrier being independently modulated commonly using some type of quadrature amplitude modulation (QAM) or phase-shift keying (PSK). This composite baseband signal is typically used to modulate a main RF carrier.
In digital modulation, minimum-shift keying (MSK) is a type of continuous-phase frequency-shift keying that was developed in the late 1950s by Collins Radio employees Melvin L. Doelz and Earl T. Heald. [1] Similar to OQPSK, MSK is encoded with bits alternating between quadrature components, with the Q component delayed by half the symbol period.
Binary phase-shift keying ; Quadrature phase-shift keying ; ... A block diagram of a generic satellite modem is shown on the image. Analog tract
Manchester coding is a special case of binary phase-shift keying (BPSK), where the data controls the phase of a square wave carrier whose frequency is the data rate. . Manchester code ensures frequent line voltage transitions, directly proportional to the clock rate; this helps clock