enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent with momentum remembers the solution update at each iteration, and determines the next update as a linear combination of the gradient and the previous update. For unconstrained quadratic minimization, a theoretical convergence rate bound of the heavy ball method is asymptotically the same as that for the optimal conjugate ...

  3. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    The minimization of the Kullback–Leibler divergence with respect to the points is performed using gradient descent. The result of this optimization is a map that reflects the similarities between the high-dimensional inputs.

  4. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  5. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  6. Wikipedia : WikiProject Maps/Conventions/Gradient maps

    en.wikipedia.org/.../Conventions/Gradient_maps

    Stake. Gradient maps are both at the center and at the basic level of map making on Wikipedia. A simple blank map and fill with color tool are needed. To continue to build a coherent Wikipedia display, this page suggests the most suitable SVG source files together with a blue-based color ramps from academic, screen friendly, print friendly, and color-blind friendly ColorBrewer2 by cartography ...

  7. File:Newton optimization vs grad descent.svg - Wikipedia

    en.wikipedia.org/wiki/File:Newton_optimization...

    English: A comparison of gradient descent (green) and Newton's method (red) for minimizing a function (with small step sizes). Newton's method uses curvature information to take a more direct route. Newton's method uses curvature information to take a more direct route.

  8. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.

  9. Descent direction - Wikipedia

    en.wikipedia.org/wiki/Descent_direction

    In optimization, a descent direction is a vector that points towards a local minimum of an objective function :.. Computing by an iterative method, such as line search defines a descent direction at the th iterate to be any such that , <, where , denotes the inner product.