enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =

  3. Operators in C and C++ - Wikipedia

    en.wikipedia.org/wiki/Operators_in_C_and_C++

    Similarly, with 3*x++, where though the post-fix ++ is designed to act AFTER the entire expression is evaluated, the precedence table makes it clear that ONLY x gets incremented (and NOT 3*x). In fact, the expression (tmp=x++, 3*tmp) is evaluated with tmp being a temporary value. It is functionally equivalent to something like (tmp=3*x, ++x, tmp).

  4. Unary operation - Wikipedia

    en.wikipedia.org/wiki/Unary_operation

    In mathematics, a unary operation is an operation with only one operand, i.e. a single input. [1] This is in contrast to binary operations , which use two operands. [ 2 ] An example is any function ⁠ f : A → A {\displaystyle f:A\rightarrow A} ⁠ , where A is a set ; the function ⁠ f {\displaystyle f} ⁠ is a unary operation on A .

  5. Bhargava factorial - Wikipedia

    en.wikipedia.org/wiki/Bhargava_factorial

    The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, 5! = 5×4×3×2×1 = 120. By convention, the value of 0! is defined as 1. This classical factorial function appears prominently in many theorems in number theory. The following are a few of these theorems. [1]

  6. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is,

  7. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    [2] [3] Thus, in the expression 1 + 2 × 3, the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7, and not (1 + 2) × 3 = 9. When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of ...

  8. Primorial - Wikipedia

    en.wikipedia.org/wiki/Primorial

    The n-compositorial is equal to the n-factorial divided by the primorial n#. The compositorials are 1, 4, 24, 192, 1728, 17 280, 207 360, 2 903 040, 43 545 600, 696 ...

  9. Memoization - Wikipedia

    en.wikipedia.org/wiki/Memoization

    In this particular example, if factorial is first invoked with 5, and then invoked later with any value less than or equal to five, those return values will also have been memoized, since factorial will have been called recursively with the values 5, 4, 3, 2, 1, and 0, and the return values for each of those will have been stored. If it is then ...