Search results
Results from the WOW.Com Content Network
In computer science, a tail call is a subroutine call performed as the final action of a procedure. [1] If the target of a tail is the same subroutine, the subroutine is said to be tail recursive, which is a special case of direct recursion. Tail recursion (or tail-end recursion) is particularly useful, and is often easy to optimize in ...
Canonical uses of function decorators are for creating class methods or static methods, adding function attributes, tracing, setting pre-and postconditions, and synchronization, [33] but can be used for far more, including tail recursion elimination, [34] memoization and even improving the writing of other decorators.
C, Java, and Python are notable mainstream languages in which all function calls, including tail calls, may cause stack allocation that would not occur with the use of looping constructs; in these languages, a working iterative program rewritten in recursive form may overflow the call stack, although tail call elimination may be a feature that ...
In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.
Note that tail call optimization in general (when the function called is not the same as the original function, as in tail-recursive calls) may be more difficult to implement than the special case of tail-recursive call optimization, and thus efficient implementation of mutual tail recursion may be absent from languages that only optimize tail ...
Without tail-call optimization, techniques such as trampolining, i.e. using a loop that iteratively invokes thunk-returning functions, can be used; without first-class functions, it is even possible to convert tail calls into just gotos in such a loop.
This counter allows us to ensure that the rear is never longer than the front list. Furthermore, using s, which is a tail of f, forces the computation of a part of the (lazy) list f during each tail and insert operation. Therefore, when | | = | |, the list f is totally forced.
Finally, tail_front and tail_rear are tails of front and of rear, they allow scheduling the moment where some lazy operations are forced. Note that, when a double-ended queue contains n elements in the front list and n elements in the rear list, then the inequality invariant remains satisfied after i insertions and d deletions when (i+d) ≤ n/2 .