enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direct sum of modules - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_modules

    In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a coproduct. Contrast with the direct product, which is the dual notion.

  3. Krull–Schmidt theorem - Wikipedia

    en.wikipedia.org/wiki/Krull–Schmidt_theorem

    If is a module that satisfies the ACC and DCC on submodules (that is, it is both Noetherian and Artinian or – equivalently – of finite length), then is a direct sum of indecomposable modules. Up to a permutation, the indecomposable components in such a direct sum are uniquely determined up to isomorphism.

  4. Direct sum - Wikipedia

    en.wikipedia.org/wiki/Direct_sum

    The direct sum is also commutative up to isomorphism, i.e. for any algebraic structures and of the same kind. The direct sum of finitely many abelian groups, vector spaces, or modules is canonically isomorphic to the corresponding direct product. This is false, however, for some algebraic objects, like nonabelian groups.

  5. Decomposition of a module - Wikipedia

    en.wikipedia.org/wiki/Decomposition_of_a_module

    A decomposition with local endomorphism rings [5] (cf. #Azumaya's theorem): a direct sum of modules whose endomorphism rings are local rings (a ring is local if for each element x, either x or 1 − x is a unit). Serial decomposition: a direct sum of uniserial modules (a module is uniserial if the lattice of submodules is a finite chain [6]).

  6. Algebraic character - Wikipedia

    en.wikipedia.org/wiki/Algebraic_character

    Algebraic characters are defined for locally-finite weight modules and are additive, i.e. the character of a direct sum of modules is the sum of their characters.On the other hand, although one can define multiplication of the formal exponents by the formula = + and extend it to their finite linear combinations by linearity, this does not make into a ring, because of the possibility of formal ...

  7. Module (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Module_(mathematics)

    A free R-module is a module that has a basis, or equivalently, one that is isomorphic to a direct sum of copies of the ring R. These are the modules that behave very much like vector spaces. Projective Projective modules are direct summands of free modules and share many of their desirable properties. Injective

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Glossary of module theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_module_theory

    A direct sum of modules is a module that is the direct sum of the underlying abelian group together with component-wise scalar multiplication. dual module The dual module of a module M over a commutative ring R is the module Hom R ⁡ ( M , R ) {\displaystyle \operatorname {Hom} _{R}(M,R)} .