Search results
Results from the WOW.Com Content Network
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
Standard set theory symbols with their usual meanings (is a member of, equals, is a subset of, is a superset of, is a proper superset of, is a proper subset of, union, intersection, empty set) ∧ ∨ → ↔ ¬ ∀ ∃ Standard logical symbols with their usual meanings (and, or, implies, is equivalent to, not, for all, there exists) ≡
Universe set and complement notation The notation L ∁ = def X ∖ L . {\displaystyle L^{\complement }~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~X\setminus L.} may be used if L {\displaystyle L} is a subset of some set X {\displaystyle X} that is understood (say from context, or because it is clearly stated what the superset X ...
3. In set-builder notation, it is used as a separator meaning "such that"; see { : }. / 1. Denotes division and is read as divided by or over. Often replaced by a horizontal bar. For example, 3 / 2 or . 2. Denotes a quotient structure.
Set theory begins with a fundamental binary relation between an object o and a set A. If o is a member (or element) of A, the notation o ∈ A is used. A set is described by listing elements separated by commas, or by a characterizing property of its elements, within braces { }. [8]
Set-builder notation can be used to describe a set that is defined by a predicate, that is, a logical formula that evaluates to true for an element of the set, and false otherwise. [2] In this form, set-builder notation has three parts: a variable, a colon or vertical bar separator, and a predicate. Thus there is a variable on the left of the ...
In the case that the index set I is the set of natural numbers, one uses the notation =, which is analogous to that of the infinite sums in series. [11] When the symbol "∪" is placed before other symbols (instead of between them), it is usually rendered as a larger size.
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.