Search results
Results from the WOW.Com Content Network
The notable unsolved problems in statistics are generally of a different flavor; according to John Tukey, [1] "difficulties in identifying problems have delayed statistics far more than difficulties in solving problems." A list of "one or two open problems" (in fact 22 of them) was given by David Cox. [2]
The seven basic tools of quality are a fixed set of visual exercises identified as being most helpful in troubleshooting issues related to quality. [1] They are called basic because they are suitable for people with little formal training in statistics and because they can be used to solve the vast majority of quality-related issues.
The GAISE document provides a two-dimensional framework, [11] specifying four components used in statistical problem solving (formulating questions, collecting data, analyzing data, and interpreting results) and three levels of conceptual understanding through which a student should progress (Levels A, B, and C). [12]
This approach can be seen as one of the two basic approaches to problem-solving, contrasted with an approach using insight and theory. However, there are intermediate methods that, for example, use theory to guide the method, an approach known as guided empiricism. [citation needed]
The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...
It establishes a permanent corrective action based on statistical analysis of the problem and on the origin of the problem by determining the root causes. Although it originally comprised eight stages, or 'disciplines', it was later augmented by an initial planning stage. 8D follows the logic of the PDCA cycle .
In the 2009 book Dirty rotten strategies by Ian I. Mitroff and Abraham Silvers described type III and type IV errors providing many examples of both developing good answers to the wrong questions (III) and deliberately selecting the wrong questions for intensive and skilled investigation (IV). Most of the examples have nothing to do with ...
Before the Monte Carlo method was developed, simulations tested a previously understood deterministic problem, and statistical sampling was used to estimate uncertainties in the simulations. Monte Carlo simulations invert this approach, solving deterministic problems using probabilistic metaheuristics (see simulated annealing).