Search results
Results from the WOW.Com Content Network
The rate of the overall reaction depends on the slowest step, so the overall reaction will be first order when the reaction of the energized reactant is slower than the collision step. The half-life is independent of the starting concentration and is given by t 1 / 2 = ln ( 2 ) k {\textstyle t_{1/2}={\frac {\ln {(2)}}{k}}} .
The statement that the first step is the slow step actually means that the first step in the reverse direction is slower than the second step in the forward direction, so that almost all NO 3 is consumed by reaction with CO and not with NO. That is, r −1 ≪ r 2, so that r 1 − r 2 ≈ 0.
The kinetic order of any elementary reaction or reaction step is equal to its molecularity, and the rate equation of an elementary reaction can therefore be determined by inspection, from the molecularity. [1] The kinetic order of a complex (multistep) reaction, however, is not necessarily equal to the number of molecules involved.
The result is equivalent to the Michaelis–Menten kinetics of reactions catalyzed at a site on an enzyme. The rate equation is complex, and the reaction order is not clear. In experimental work, usually two extreme cases are looked for in order to prove the mechanism. In them, the rate-determining step can be: Limiting step: adsorption/desorption
Here k is the first-order rate constant, having dimension 1/time, [A](t) is the concentration at a time t and [A] 0 is the initial concentration. The rate of a first-order reaction depends only on the concentration and the properties of the involved substance, and the reaction itself can be described with a characteristic half-life. More than ...
Since the reaction rate determines the reaction timescale, the exact formula for the Damköhler number varies according to the rate law equation. For a general chemical reaction A → B following the Power law kinetics of n-th order, the Damköhler number for a convective flow system is defined as: = where: k = kinetics reaction rate constant ...
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
For a unimolecular reaction or step, the rate is proportional to the concentration of molecules of reactant, so the rate law is first order. For a bimolecular reaction or step, the number of collisions is proportional to the product of the two reactant concentrations, or second order. A termolecular step is predicted to be third order, but also ...