Search results
Results from the WOW.Com Content Network
In quantum chemistry, size consistency and size extensivity are concepts relating to how the behaviour of quantum-chemistry calculations changes with the system size. Size consistency (or strict separability) is a property that guarantees the consistency of the energy behaviour when interaction between the involved molecular subsystems is nullified (for example, by distance).
Davidson correction improves both size consistency and size extensivity of CISD energies. [2] [4] Therefore, Davidson correction is frequently referred to in literature as size-consistency correction or size-extensivity correction. However, neither Davidson correction itself nor the corrected energies are size-consistent or size-extensive.
[1] [2] According to International Union of Pure and Applied Chemistry (IUPAC), an intensive property or intensive quantity is one whose magnitude is independent of the size of the system. [3] An intensive property is not necessarily homogeneously distributed in space; it can vary from place to place in a body of matter and radiation.
The choice of the exponential ansatz is opportune because (unlike other ansatzes, for example, configuration interaction) it guarantees the size extensivity of the solution. Size consistency in CC theory, also unlike other theories, does not depend on the size consistency of the reference wave function.
From Wikipedia, the free encyclopedia. Redirect page
For example, records for rainfall within an area might increase in three ways: records for additional time periods; records for additional sites with a fixed area; records for extra sites obtained by extending the size of the area. In such cases, the property of consistency may be limited to one or more of the possible ways a sample size can grow.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
which is the law of Type 1 deterministic size effect (Fig. 2a). The purpose of the approximation made is: (a) to prevent from becoming negative for very small , for which the foregoing argument does not apply; and (b) to satisfy the asymptotic condition that the deterministic size effect must vanish for /.