enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric derivative - Wikipedia

    en.wikipedia.org/wiki/Symmetric_derivative

    The symmetric derivative at a given point equals the arithmetic mean of the left and right derivatives at that point, if the latter two both exist. [1] [2]: 6 Neither Rolle's theorem nor the mean-value theorem hold for the symmetric derivative; some similar but weaker statements have been proved.

  3. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    Sigmoid curves are also common in statistics as cumulative distribution functions (which go from 0 to 1), such as the integrals of the logistic density, the normal density, and Student's t probability density functions. The logistic sigmoid function is invertible, and its inverse is the logit function.

  4. Symmetric function - Wikipedia

    en.wikipedia.org/wiki/Symmetric_function

    In statistics, an -sample statistic (a function in variables) that is obtained by bootstrapping symmetrization of a -sample statistic, yielding a symmetric function in variables, is called a U-statistic. Examples include the sample mean and sample variance.

  5. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.

  6. Semi-differentiability - Wikipedia

    en.wikipedia.org/wiki/Semi-differentiability

    If the left and right derivatives are equal, then they have the same value as the usual ("bidirectional") derivative. One can also define a symmetric derivative , which equals the arithmetic mean of the left and right derivatives (when they both exist), so the symmetric derivative may exist when the usual derivative does not.

  7. Symmetric probability distribution - Wikipedia

    en.wikipedia.org/wiki/Symmetric_probability...

    The distribution can be discrete or continuous, and the existence of a density is not required, but the inertia must be finite and non null. In the univariate case, this index was proposed as a non parametric test of symmetry. [2] For continuous symmetric spherical, Mir M. Ali gave the following definition.

  8. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function , then the characteristic function is the Fourier transform (with sign reversal) of the probability density function.

  9. Bell-shaped function - Wikipedia

    en.wikipedia.org/wiki/Bell-shaped_function

    The Gaussian function is the archetypal example of a bell shaped function. A bell-shaped function or simply 'bell curve' is a mathematical function having a characteristic "bell"-shaped curve.