Search results
Results from the WOW.Com Content Network
Let r(x) be the position vector of the point x with respect to the origin of the coordinate system. The notation can be simplified by noting that x = r(x). At each point we can construct a small line element dx. The square of the length of the line element is the scalar product dx • dx and is called the metric of the space.
It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand. In the relativistic formulation of electromagnetism, the nine components of the Maxwell stress tensor appear, negated, as components of the electromagnetic stress–energy tensor , which ...
A system of skew coordinates is a curvilinear coordinate system where the coordinate surfaces are not orthogonal, [1] in contrast to orthogonal coordinates.. Skew coordinates tend to be more complicated to work with compared to orthogonal coordinates since the metric tensor will have nonzero off-diagonal components, preventing many simplifications in formulas for tensor algebra and tensor ...
A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):
In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.
Two-point tensors, or double vectors, are tensor-like quantities which transform as Euclidean vectors with respect to each of their indices. They are used in continuum mechanics to transform between reference ("material") and present ("configuration") coordinates. [ 1 ]
In mathematics, Voigt notation or Voigt form in multilinear algebra is a way to represent a symmetric tensor by reducing its order. [1] There are a few variants and associated names for this idea: Mandel notation, Mandel–Voigt notation and Nye notation are others found.
More generally, if the Cartesian coordinates x, y, z undergo a linear transformation, then the numerical value of the density ρ must change by a factor of the reciprocal of the absolute value of the determinant of the coordinate transformation, so that the integral remains invariant, by the change of variables formula for integration.