enow.com Web Search

  1. Ad

    related to: identifying discontinuities in functions ppt template

Search results

  1. Results from the WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The term removable discontinuity is sometimes broadened to include a removable singularity, in which the limits in both directions exist and are equal, while the function is undefined at the point . [a] This use is an abuse of terminology because continuity and discontinuity of a function are concepts defined only for points in the function's ...

  3. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Then f is a non-decreasing function on [a, b], which is continuous except for jump discontinuities at x n for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions. [8] [9]

  4. Gibbs phenomenon - Wikipedia

    en.wikipedia.org/wiki/Gibbs_phenomenon

    For a piecewise continuously differentiable (class C 1) function, the Fourier series converges to the function at every point except at jump discontinuities. At jump discontinuities, the infinite sum will converge to the jump discontinuity's midpoint (i.e. the average of the values of the function on either side of the jump), as a consequence ...

  5. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain.If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some > such that for every >, we can find a point such that | | < and | () |.

  6. Talk:Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Talk:Discontinuities_of...

    In this way any monotone function can be written in a unique way as the sum of a continuous monotone function and a jump function. Since the formula for H ( x ) {\displaystyle H(x)} is a positive combination of characteristic functions, it is a uniformly convergent sum, so the analysis of Riesz & Sz.-Nagy (1990 , pp. 13–15) is particularly ...

  7. Talk:Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Talk:Classification_of...

    The term removable discontinuity is sometimes broadened to include a removable singularity, in which the limits in both directions exist and are equal, while the function is undefined at the point This use is an abuse of terminology because continuity and discontinuity of a function are concepts defined only for points in the function's domain.

  8. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    A natural follow-up question one might ask is if there is a function which is continuous on the rational numbers and discontinuous on the irrational numbers. This turns out to be impossible. The set of discontinuities of any function must be an F σ set. If such a function existed, then the irrationals would be an F σ set.

  9. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    In mathematics, the limit of a function is a fundamental concept in calculus and analysis concerning the behavior of that function near a particular input which may or may not be in the domain of the function. Formal definitions, first devised in the early 19th century, are given below. Informally, a function f assigns an output f(x) to every ...

  1. Ad

    related to: identifying discontinuities in functions ppt template