enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    When a regular dodecahedron is inscribed in a sphere, it occupies more of the sphere's volume (66.49%) than an icosahedron inscribed in the same sphere (60.55%). [10] The resulting of both spheres' volumes initially began from the problem by ancient Greeks, determining which of two shapes has a larger volume: an icosahedron inscribed in a ...

  3. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    The concave equilateral dodecahedron, called an endo-dodecahedron. [clarification needed] A cube can be divided into a pyritohedron by bisecting all the edges, and faces in alternate directions. A regular dodecahedron is an intermediate case with equal edge lengths. A rhombic dodecahedron is a degenerate case with the 6 crossedges reduced to ...

  4. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The icosahedron has the largest number of faces and the largest dihedral angle, it hugs its inscribed sphere the most tightly, and its surface area to volume ratio is closest to that of a sphere of the same size (i.e. either the same surface area or the same volume). The dodecahedron, on the other hand, has the smallest angular defect, the ...

  5. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities; List of volume formulas – Quantity of three-dimensional space

  6. Regular icosahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_icosahedron

    Both volumes have formulas involving the golden ratio, but taken to different powers. [11] As it turns out, the icosahedron occupies less of the sphere's volume (60.54%) than the dodecahedron (66.49%). [12]

  7. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    This equation, stated by Euler in 1758, [2] is known as Euler's polyhedron formula. [3] It corresponds to the Euler characteristic of the sphere (i.e. χ = 2 {\displaystyle \ \chi =2\ } ), and applies identically to spherical polyhedra .

  8. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    The rhombicosidodecahedron shares the vertex arrangement with the small stellated truncated dodecahedron, and with the uniform compounds of six or twelve pentagrammic prisms. The Zometool kits for making geodesic domes and other polyhedra use slotted balls as connectors. The balls are "expanded" rhombicosidodecahedra, with the squares replaced ...

  9. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    Every two ideal polyhedra with the same number of vertices have the same surface area, and it is possible to calculate the volume of an ideal polyhedron using the Lobachevsky function. The surface of an ideal polyhedron forms a hyperbolic manifold , topologically equivalent to a punctured sphere, and every such manifold forms the surface of a ...