Search results
Results from the WOW.Com Content Network
Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products. [1] Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]].
An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H +) across a membrane during cellular respiration or photosynthesis. An ion gradient has potential energy and can be used to power chemical reactions when the ions pass through a channel (red).
In one important reaction type, a main group organometallic compound of the type R-M (where R = organic group, M = main group centre metal atom) reacts with an organic halide of the type R'-X with formation of a new carbon-carbon bond in the product R-R'. The most common type of coupling reaction is the cross coupling reaction. [1] [2] [3]
Cellular respiration happens when a cell takes glucose and oxygen and uses it to produce carbon dioxide, energy, and water. This transaction is important not only for the benefit of the cells, but for the carbon dioxide output provided, which is key in the process of photosynthesis .
Carbon fixation is an endothermic redox reaction. In general outline, photosynthesis is the opposite of cellular respiration: while photosynthesis is a process of reduction of carbon dioxide to carbohydrates, cellular respiration is the oxidation of carbohydrates or other nutrients to carbon dioxide. Nutrients used in cellular respiration ...
Redox reactions are chemical reactions in which electrons are transferred from a donor molecule to an acceptor molecule. The underlying force driving these reactions is the Gibbs free energy of the reactants relative to the products. If donor and acceptor (the reactants) are of higher free energy than the reaction products, the electron ...
The cleavage of a phosphate group from ATP results in the coupling of energy to metabolic reactions and a by-product of ADP. [1] ATP is continually reformed from lower-energy species ADP and AMP. The biosynthesis of ATP is achieved throughout processes such as substrate-level phosphorylation , oxidative phosphorylation , and ...
The coupling of ATP hydrolysis and transport is a chemical reaction in which a fixed number of solute molecules are transported for each ATP molecule hydrolyzed; for the Na + /K + exchanger, this is three Na + ions out of the cell and two K+ ions inside per ATP molecule hydrolyzed.