enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Boundary conditions in fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]

  3. No-slip condition - Wikipedia

    en.wikipedia.org/wiki/No-slip_condition

    The no-slip condition is an empirical assumption that has been useful in modelling many macroscopic experiments. It was one of three alternatives that were the subject of contention in the 19th century, with the other two being the stagnant-layer (a thin layer of stationary fluid on which the rest of the fluid flows) and the partial slip (a finite relative velocity between solid and fluid ...

  4. Von Kármán constant - Wikipedia

    en.wikipedia.org/wiki/Von_Kármán_constant

    In fluid dynamics, the von Kármán constant (or Kármán's constant), named for Theodore von Kármán, is a dimensionless constant involved in the logarithmic law describing the distribution of the longitudinal velocity in the wall-normal direction of a turbulent fluid flow near a boundary with a no-slip condition. The equation for such ...

  5. Boundary conditions in computational fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    Consider situation solid wall parallel to the x-direction: Assumptions made and relations considered- The near wall flow is considered as laminar and the velocity varies linearly with distance from the wall; No slip condition: u = v = 0. In this we are applying the “wall functions” instead of the mesh points.

  6. Flow conditioning - Wikipedia

    en.wikipedia.org/wiki/Flow_conditioning

    A pressure outlet boundary condition is used at exit of the settling chamber where pressure at outlet is set to zero for gauge pressure. It is always possible to predict the entire flow field by meshing whole fluid domain; however simulation for the prediction of entire flow field using symmetry boundary condition.

  7. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    The no slip boundary condition at the pipe wall requires that u = 0 at r = R (radius of the pipe), which yields c 2 = ⁠ GR 2 / 4μ ⁠. Thus we have finally the following parabolic velocity profile: = (). The maximum velocity occurs at the pipe centerline (r = 0), u max = ⁠ GR 2 / 4μ ⁠.

  8. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    The pressure gradient does not enter into the problem. The initial, no-slip condition on the wall is (,) = ⁡, (,) =, and the second boundary condition is due to the fact that the motion at = is not felt at infinity. The flow is only due to the motion of the plate, there is no imposed pressure gradient.

  9. Boundary layer thickness - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer_thickness

    The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by