Search results
Results from the WOW.Com Content Network
In neutral solution, permanganate slowly reduces to manganese dioxide (MnO 2). This is the material that stains one's skin when handling KMnO 4. KMnO 4 reduces in alkaline solution to give green K 2 MnO 4: [75] 4 KMnO 4 + 4 KOH → 4 K 2 MnO 4 + O 2 + 2 H 2 O. This reaction illustrates the relatively rare role of hydroxide as a reducing agent.
This reaction illustrates the relatively rare role of hydroxide as a reducing agent. The concentration of K 2 MnO 4 in such solutions can be checked by measuring their absorbance at 610 nm. The one-electron reduction of permanganate to manganate can also be effected using iodide as the reducing agent: 2 KMnO 4 + 2 KI → 2 K 2 MnO 4 + I 2
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
A permanganate can oxidize an amine to a nitro compound, [7] [8] an alcohol to a ketone, [9] an aldehyde to a carboxylic acid, [10] [11] a terminal alkene to a carboxylic acid, [12] oxalic acid to carbon dioxide, [13] and an alkene to a diol. [14] This list is not exhaustive. In alkene oxidations one intermediate is a cyclic Mn(V) species: [15]
The chemical chameleon reaction shows the process in reverse, by reducing violet potassium permanganate first to green potassium manganate and eventually to brown manganese dioxide: [1] [2] [5] KMnO 4 (violet) → K 2 MnO 4 (green) → MnO 2 (brown/yellow suspension) Blue potassium hypomanganate may also form as an intermediate. [6]
The white smoke-like vapor produced by the reaction is a mixture of carbon dioxide gas and water vapor. Since the reaction is highly exothermic, initial sparking occurs, followed by a lilac- or pink-colored flame. [9] When energy or heat is added to electrons, their energy level increases to an excited state.
The reaction is considered Markovnikov as it results in water addition with same regiospecificity as a direct hydration reaction. Alkene hydroboration-oxidation: Stereospecific: Can only be syn addition – hydrogen and hydroxyl (-OH) are added to the same face. The reaction is anti-Markovnikov. Hydroxyl attaches to the less substituted carbon.
Dihydroxylation is the process by which an alkene is converted into a vicinal diol.Although there are many routes to accomplish this oxidation, the most common and direct processes use a high-oxidation-state transition metal (typically osmium or manganese).