Search results
Results from the WOW.Com Content Network
A gauge theory is a type of theory in physics. The word gauge means a measurement, a thickness, an in-between distance (as in railroad tracks), or a resulting number of units per certain parameter (a number of loops in an inch of fabric or a number of lead balls in a pound of ammunition). [1]
In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice. Gauge theories are important in particle physics , and include the prevailing theories of elementary particles : quantum electrodynamics , quantum chromodynamics (QCD) and particle physics' Standard Model .
The concept and the name of gauge theory derives from the work of Hermann Weyl in 1918. [1] Weyl, in an attempt to generalize the geometrical ideas of general relativity to include electromagnetism, conjectured that Eichinvarianz or invariance under the change of scale (or "gauge") might also be a local symmetry of general relativity.
Seiberg–Witten theory; Six-dimensional holomorphic Chern–Simons theory; Slavnov–Taylor identities; Soft photon; Stable Yang–Mills connection; Stable Yang–Mills–Higgs pair; Stueckelberg action; Supersymmetric gauge theory; Synthetic gauge field
Electromagnetic theory possess the simplest kind of local gauge symmetry called () (see unitary group). A theory that displays local gauge invariance is called a gauge theory. In order to formulate other gauge theories we turn the above reasoning inside out. This is the subject of the next section.
As a gauge theory, the theory has a gauge symmetry under the action of a gauge group, a Lie group, with associated Lie algebra through the usual correspondence. The field content is the gauge field A μ {\displaystyle A_{\mu }} , also known in geometry as the connection .
In physics, a gauge principle specifies a procedure for obtaining an interaction term from a free Lagrangian which is symmetric with respect to a continuous symmetry—the results of localizing (or gauging) the global symmetry group must be accompanied by the inclusion of additional fields (such as the electromagnetic field), with appropriate kinetic and interaction terms in the action, in ...
This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson.