Search results
Results from the WOW.Com Content Network
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
Dictionary < ' TKey, ' TValue > type (which is implemented as a hash table), which is the primary associative array type used in C# and Visual Basic. This type may be preferred when writing code that is intended to operate with other languages on the .NET Framework, or when the performance characteristics of a hash table are preferred over ...
In C and C++ arrays do not support the size function, so programmers often have to declare separate variable to hold the size, and pass it to procedures as a separate parameter. Elements of a newly created array may have undefined values (as in C), or may be defined to have a specific "default" value such as 0 or a null pointer (as in Java).
Data-driven programming is similar to event-driven programming, in that both are structured as pattern matching and resulting processing, and are usually implemented by a main loop, though they are typically applied to different domains.
The Nial example of the inner product of two arrays can be implemented using the native matrix multiplication operator. If a is a row vector of size [1 n] and b is a corresponding column vector of size [n 1]. a * b; By contrast, the entrywise product is implemented as: a .* b;
Not being able to finish all your groceries before they expire isn't a good feeling. But how do you make sure you're safely freezing milk?
The countdown to Christmas is on, but the threat of delayed packages could dampen the holiday spirit. Winter storms, out-of-stock items, ground shipping risks and a host of other issues could ...
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.