enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    But if exact values for large factorials are desired, then special software is required, as in the pseudocode that follows, which implements the classic algorithm to calculate 1, 1×2, 1×2×3, 1×2×3×4, etc. the successive factorial numbers.

  3. Multiple factor analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_factor_analysis

    On the contrary, the individual 5 is more characterized by high values for the variables of group 2 than for the variables of group 1 (for the individual 5, group 2 partial point lies further from the origin than group 1 partial point). This reading of the graph can be checked directly in the data. 6. Representations of groups of variables as ...

  4. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    Much of the mathematics of the factorial function was developed beginning in the late 18th and early 19th centuries. Stirling's approximation provides an accurate approximation to the factorial of large numbers, showing that it grows more quickly than exponential growth .

  5. Comparison of Java and C++ - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_Java_and_C++

    C++ allows namespace-level constants, variables, and functions. In Java, such entities must belong to some given type, and therefore must be defined inside a type definition, either a class or an interface. In C++, objects are values, while in Java they are not. C++ uses value semantics by default, while Java always uses reference semantics. To ...

  6. Factorion - Wikipedia

    en.wikipedia.org/wiki/Factorion

    Let be a natural number. For a base >, we define the sum of the factorials of the digits [5] [6] of , :, to be the following: ⁡ = =!. where = ⌊ ⁡ ⌋ + is the number of digits in the number in base , ! is the factorial of and

  7. OCaml - Wikipedia

    en.wikipedia.org/wiki/OCaml

    As the factorial function grows very rapidly, it quickly overflows machine-precision numbers (typically 32- or 64-bits). Thus, factorial is a suitable candidate for arbitrary-precision arithmetic. In OCaml, the Num module (now superseded by the ZArith module) provides arbitrary-precision arithmetic and can be loaded into a running top-level using:

  8. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  9. Smalltalk - Wikipedia

    en.wikipedia.org/wiki/Smalltalk

    which sends "factorial" to 3, then "factorial" to the result (6), then "log" to the result (720), producing the result 2.85733. A series of expressions can be written as in the following (hypothetical) example, each separated by a period (period is a statement separator, not a statement terminator).