Search results
Results from the WOW.Com Content Network
In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences (or strings) of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element.
In mathematics, it is more commonly known as the free monoid construction. The application of the Kleene star to a set V {\\displaystyle V} is written as V ∗ {\\displaystyle V^{*}} . It is widely used for regular expressions , which is the context in which it was introduced by Stephen Kleene to characterize certain automata , where it means ...
This monoid is denoted Σ ∗ and is called the free monoid over Σ. It is not commutative if Σ has at least two elements. Given any monoid M, the opposite monoid M op has the same carrier set and identity element as M, and its operation is defined by x • op y = y • x. Any commutative monoid is the opposite monoid of itself.
A simpler example are the free monoids. The free monoid on a set X, is the monoid of all finite strings using X as alphabet, with operation concatenation of strings. The identity is the empty string. In essence, the free monoid is simply the set of all words, with no equivalence relations imposed.
Conversely, the set of isomorphism classes (if such a thing makes sense) of a monoidal category is a monoid w.r.t. the tensor product. Any commutative monoid (,,) can be realized as a monoidal category with a single object. Recall that a category with a single object is the same thing as an ordinary monoid.
The monoid is then presented as the quotient of the free monoid (or the free semigroup) by these relations. This is an analogue of a group presentation in group theory. As a mathematical structure, a monoid presentation is identical to a string rewriting system (also known as a semi-Thue system). Every monoid may be presented by a semi-Thue ...
In computer science, more precisely in automata theory, a recognizable set of a monoid is a subset that can be distinguished by some homomorphism to a finite monoid. Recognizable sets are useful in automata theory, formal languages and algebra. This notion is different from the notion of recognizable language.
Term rewriting systems can be employed to compute arithmetic operations on natural numbers.To this end, each such number has to be encoded as a term.The simplest encoding is the one used in the Peano axioms, based on the constant 0 (zero) and the successor function S.