Search results
Results from the WOW.Com Content Network
Such pathways will often display steady-state behavior where the chemical species are unchanging, but there is a continuous dissipation of flux through the pathway. Many, but not all, biochemical pathways evolve to stable, steady states. As a result, the steady state represents an important reference state to study.
The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.
Here, the damping ratio is always equal to one. There should be no oscillation about the steady-state value in the ideal case. Overdamped An overdamped response is the response that does not oscillate about the steady-state value but takes longer to reach steady-state than the critically damped case. Here damping ratio is greater than one.
Steady state is reached (attained) after transient (initial, oscillating or turbulent) state has subsided. During steady state, a system is in relative stability. Steady state determination is an important topic, because many design specifications of electronic systems are given in terms of the steady-state characteristics. Periodic steady ...
A steady-state economy is not to be confused with economic stagnation: Whereas a steady-state economy is established as the result of deliberate political action, economic stagnation is the unexpected and unwelcome failure of a growth economy. An ideological contrast to the steady-state economy is formed by the concept of a post-scarcity economy.
The steady-state response is the output of the system in the limit of infinite time, and the transient response is the difference between the response and the steady-state response; it corresponds to the homogeneous solution of the differential equation. The transfer function for an LTI system may be written as the product:
For steady state conditions, the total load on the network is balanced by the inflow into the network at the source node. The interconnection of a network can produce a closed path of branches, known as a loop. In figure, loop A consists of branches p12-p24-p14, loop B consists of p13-p34-p14, and loop C consists of p24-p25-p35-p34.
In biochemistry, steady state refers to the maintenance of constant internal concentrations of molecules and ions in the cells and organs of living systems. [1] Living organisms remain at a dynamic steady state where their internal composition at both cellular and gross levels are relatively constant, but different from equilibrium concentrations. [1]