Search results
Results from the WOW.Com Content Network
However, the definition of maximal and minimal elements is more general. In particular, a set can have many maximal and minimal elements, whereas infima and suprema are unique. Whereas maxima and minima must be members of the subset that is under consideration, the infimum and supremum of a subset need not be members of that subset themselves.
The supremum/superior/outer limit is a set that joins these accumulation sets together. That is, it is the union of all of the accumulation sets. When ordering by set inclusion, the supremum limit is the least upper bound on the set of accumulation points because it contains each of them. Hence, it is the supremum of the limit points.
This concept is also called supremum or join, and for a set S one writes sup(S) or for its least upper bound. Conversely, the greatest lower bound is known as infimum or meet and denoted inf(S) or . These concepts play an important role in many applications of order theory.
Consequently, bounded completeness is equivalent to the existence of all non-empty infima. A poset is a complete lattice if and only if it is a cpo and a join-semilattice. Indeed, for any subset X, the set of all finite suprema (joins) of X is directed and the supremum of this set (which exists by directed completeness) is equal to the supremum ...
As is often the case in measure-theoretic questions, the definition of essential supremum and infimum does not start by asking what a function does at points (that is, the image of ), but rather by asking for the set of points where equals a specific value (that is, the preimage of under ).
In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property) [1] is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X .
In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...
An obvious application is to the definition of demand correspondence. Let P {\displaystyle P} be the class of functionals on X {\displaystyle X} . An element p ∈ P {\displaystyle p\in P} is called a price functional or price system and maps every consumption bundle x ∈ X {\displaystyle x\in X} into its market value p ( x ) ∈ R ...