enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.

  4. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    In SI, this slope or derivative is expressed in the units of meters per second per second (/, usually termed "meters per second-squared"). Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the ...

  5. Absement - Wikipedia

    en.wikipedia.org/wiki/Absement

    Integrals and derivatives of displacement, including absement, as well as integrals and derivatives of energy, including actergy. (Janzen et al. 2014) In kinematics, absement (or absition) is a measure of sustained displacement of an object from its initial position, i.e. a measure of how far away and for how long.

  6. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    Even higher derivatives are sometimes also used: the third derivative of position with respect to time is known as the jerk. See motion graphs and derivatives. A large number of fundamental equations in physics involve first or second time derivatives of quantities. Many other fundamental quantities in science are time derivatives of one another:

  7. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    A parametric C r-curve or a C r-parametrization is a vector-valued function: that is r-times continuously differentiable (that is, the component functions of γ are continuously differentiable), where , {}, and I is a non-empty interval of real numbers.

  8. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}

  9. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero.