Search results
Results from the WOW.Com Content Network
Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function.
The divisor summatory function is defined as = =,where = =, =is the divisor function.The divisor function counts the number of ways that the integer n can be written as a product of two integers.
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n. Arithmetic functions are often extremely irregular (see table ), but some of them have series expansions in terms of Ramanujan's sum .
A divisor of that is not a trivial divisor is known as a non-trivial divisor (or strict divisor [6]). A nonzero integer with at least one non-trivial divisor is known as a composite number , while the units −1 and 1 and prime numbers have no non-trivial divisors.
The purpose of this page is to catalog new, interesting, and useful identities related to number-theoretic divisor sums, i.e., sums of an arithmetic function over the divisors of a natural number , or equivalently the Dirichlet convolution of an arithmetic function () with one:
Tau function may refer to: Tau function (integrable systems), in integrable systems; Ramanujan tau function, giving the Fourier coefficients of the Ramanujan modular form; Divisor function, an arithmetic function giving the number of divisors of an integer
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.