Search results
Results from the WOW.Com Content Network
The luminosity thus obtained is known as the bolometric luminosity. Masses are often calculated from the dynamics of the virialized system or from gravitational lensing . Typical mass-to-light ratios for galaxies range from 2 to 10 ϒ ☉ while on the largest scales, the mass to light ratio of the observable universe is approximately 100 ϒ ...
The relationship is represented by the equation: = where L ⊙ and M ⊙ are the luminosity and mass of the Sun and 1 < a < 6. [2] The value a = 3.5 is commonly used for main-sequence stars. [ 3 ] This equation and the usual value of a = 3.5 only applies to main-sequence stars with masses 2 M ⊙ < M < 55 M ⊙ and does not apply to red giants ...
A mock-up of the galaxy color–magnitude diagram with three populations: the red sequence, the blue cloud, and the green valley. The galaxy color–magnitude diagram shows the relationship between absolute magnitude (a measure of luminosity) and mass of galaxies.
In astronomy, the initial mass function (IMF) is an empirical function that describes the initial distribution of masses for a population of stars during star formation. [1] IMF not only describes the formation and evolution of individual stars, it also serves as an important link that describes the formation and evolution of galaxies.
The Tully–Fisher relation for spiral and lenticular galaxies. In astronomy, the Tully–Fisher relation (TFR) is a widely verified empirical relationship between the mass or intrinsic luminosity of a spiral galaxy and its asymptotic rotation velocity or emission line width. Since the observed brightness of a galaxy is distance-dependent, the ...
The greater a star's luminosity, the greater its mass will be. The absolute magnitude or luminosity of a star can be found by knowing the distance to it and its apparent magnitude. The stars bolometric magnitude is plotted against its mass, in units of the Sun's mass. This is determined through observation and then the mass of the star is read ...
Velocity dispersion (y-axis) plotted against absolute magnitude (x-axis) for a sample of elliptical galaxies, with the Faber–Jackson relation shown in blue.. The Faber–Jackson relation provided the first empirical power-law relation between the luminosity and the central stellar velocity dispersion of elliptical galaxy, and was presented by the astronomers Sandra M. Faber and Robert Earl ...
The observational result of Hubble's law, the proportional relationship between distance and the speed with which a galaxy is moving away from us, usually referred to as redshift, is a product of the cosmic distance ladder. Edwin Hubble observed that fainter galaxies are more redshifted. Finding the value of the Hubble constant was the result ...