Search results
Results from the WOW.Com Content Network
The atmospheric pressure is roughly equal to the sum of partial pressures of constituent gases – oxygen, nitrogen, argon, water vapor, carbon dioxide, etc.. In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. [1]
For ideal gases, the molar volume is given by the ideal gas equation; this is a good approximation for many common gases at standard temperature and pressure. The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ...
The proportionality constant, , when written in the form used above, has the dimension [pv 2] (pressure times molar volume squared), which is also molar energy times molar volume. The Sutherland potential (orange) represents two hard spheres that attract according to an inverse power law, and the Lennard-Jones potential (black) represents the ...
Combined gas law – Combination of Charles', Boyle's and Gay-Lussac's gas laws; Gay-Lussac's law – Relationship between pressure and temperature of a gas at constant volume; Henry's law – Gas law regarding proportionality of dissolved gas; Mole (unit) – SI unit of amount of substance; Partial pressure – Pressure of a component gas in a ...
The partial volume of a particular gas is a fraction of the total volume occupied by the gas mixture, with unchanged pressure and temperature. In gas mixtures, e.g. air, the partial volume allows focusing on one particular gas component, e.g. oxygen. It can be approximated both from partial pressure and molar fraction: [4] = =
This is the experimental expression of volume as an extensive quantity. According to Amagat's law of partial volume, the total volume of a non-reacting mixture of gases at constant temperature and pressure should be equal to the sum of the individual partial volumes of the constituent gases.
For a gas obeying the van der Waals equation, the explicit formula for the fugacity coefficient is = (()) This formula is based on the molar volume. Since the pressure and the molar volume are related through the equation of state; a typical procedure would be to choose a volume, calculate the corresponding pressure, and then evaluate ...
According to Sazonov and Shaw, [7] the dimensionless Bunsen coefficient is defined as "the volume of saturating gas, V1, reduced to T° = 273.15 K, p° = 1 bar, which is absorbed by unit volume V 2 * of pure solvent at the temperature of measurement and partial pressure of 1 bar." If the gas is ideal, the pressure cancels out, and the ...