Search results
Results from the WOW.Com Content Network
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 2 , − 8 5 , −8 5 , and 8 −5 .
One half is one of the few fractions which are commonly expressed in natural languages by suppletion rather than regular derivation. In English, for example, compare the compound "one half" with other regular formations like "one-sixth". A half can also be said to be one part of something divided into two equal parts.
Slices of approximately 1/8 of a pizza. A unit fraction is a positive fraction with one as its numerator, 1/ n.It is the multiplicative inverse (reciprocal) of the denominator of the fraction, which must be a positive natural number.
It is sometimes necessary to separate a continued fraction into its even and odd parts. For example, if the continued fraction diverges by oscillation between two distinct limit points p and q, then the sequence {x 0, x 2, x 4, ...} must converge to one of these, and {x 1, x 3, x 5, ...} must converge to the other.
Problems 1–6 compute divisions of a certain number of loaves of bread by 10 men and record the outcome in unit fractions. Problems 7–20 show how to multiply the expressions 1 + 1/2 + 1/4 = 7/4, and 1 + 2/3 + 1/3 = 2 by different fractions. Problems 21–23 are problems in completion, which in modern notation are simply subtraction problems.
In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/ x or x−1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a / b is b / a. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one ...
If x is rational, it will have two continued fraction representations that are finite, x 1 and x 2, and similarly a rational y will have two representations, y 1 and y 2. The coefficients beyond the last in any of these representations should be interpreted as +∞; and the best rational will be one of z(x 1, y 1), z(x 1, y 2), z(x 2, y 1), or ...
1/2 + 1/4 + 1/8 + 1/16 + ⋯. First six summands drawn as portions of a square. The geometric series on the real line. In mathematics, the infinite series 1 2 + 1 4 + 1 8 + 1 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation ...