Search results
Results from the WOW.Com Content Network
The sum of squares of residuals, also called the residual sum of squares: The total sum of squares (proportional to the variance of the data): The most general definition of the coefficient of determination is. In the best case, the modeled values exactly match the observed values, which results in and R2 = 1.
Propagation of uncertainty. In statistics, propagation of uncertainty (or propagation of error) is the effect of variables ' uncertainties (or errors, more specifically random errors) on the uncertainty of a function based on them. When the variables are the values of experimental measurements they have uncertainties due to measurement ...
These deviations are called residuals when the calculations are performed over the data sample that was used for estimation (and are therefore always in reference to an estimate) and are called errors (or prediction errors) when computed out-of-sample (aka on the full set, referencing a true value rather than an estimate). The RMSD serves to ...
Reduced chi-squared statistic. In statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating [1] and variance of unit weight in the context of weighted least squares. [2][3] Its square root is called regression standard error, [4 ...
It is remarkable that the sum of squares of the residuals and the sample mean can be shown to be independent of each other, using, e.g. Basu's theorem.That fact, and the normal and chi-squared distributions given above form the basis of calculations involving the t-statistic:
v. t. e. In statistics, simple linear regression (SLR) is a linear regression model with a single explanatory variable. [1][2][3][4][5] That is, it concerns two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function ...
Residual sum of squares. In statistics, the residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared estimate of errors (SSE), is the sum of the squares of residuals (deviations predicted from actual empirical values of data). It is a measure of the discrepancy between the data and an estimation ...
R 2 L is given by Cohen: [1] =. This is the most analogous index to the squared multiple correlations in linear regression. [3] It represents the proportional reduction in the deviance wherein the deviance is treated as a measure of variation analogous but not identical to the variance in linear regression analysis. [3]