enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    A modular multiplicative inverse of an integer a with respect to the modulus m is a solution of the linear congruence a x ≡ 1 ( mod m ) . {\displaystyle ax\equiv 1{\pmod {m}}.} The previous result says that a solution exists if and only if gcd( a , m ) = 1 , that is, a and m must be relatively prime (i.e. coprime).

  3. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    This integer a −1 is called a modular multiplicative inverse of a modulo m. If a ≡ b (mod m) and a −1 exists, then a −1 ≡ b −1 (mod m) (compatibility with multiplicative inverse, and, if a = b, uniqueness modulo m). If ax ≡ b (mod m) and a is coprime to m, then the solution to this linear congruence is given by x ≡ a −1 b (mod m).

  4. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    Extended Euclidean algorithm also refers to a very similar algorithm for computing the polynomial greatest common divisor and the coefficients of Bézout's identity of two univariate polynomials. The extended Euclidean algorithm is particularly useful when a and b are coprime. With that provision, x is the modular multiplicative inverse of a ...

  5. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.

  6. Hensel's lemma - Wikipedia

    en.wikipedia.org/wiki/Hensel's_lemma

    Hensel's original lemma concerns the relation between polynomial factorization over the integers and over the integers modulo a prime number p and its powers. It can be straightforwardly extended to the case where the integers are replaced by any commutative ring, and p is replaced by any maximal ideal (indeed, the maximal ideals of have the form , where p is a prime number).

  7. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    The modular inverse of aR mod N is REDC((aR mod N) −1 (R 3 mod N)). Modular exponentiation can be done using exponentiation by squaring by initializing the initial product to the Montgomery representation of 1, that is, to R mod N, and by replacing the multiply and square steps by Montgomery multiplies.

  8. Quadratic residue - Wikipedia

    en.wikipedia.org/wiki/Quadratic_residue

    The theoretical way solutions modulo the prime powers are combined to make solutions modulo n is called the Chinese remainder theorem; it can be implemented with an efficient algorithm. [30] For example: Solve x 2 ≡ 6 (mod 15). x 2 ≡ 6 (mod 3) has one solution, 0; x 2 ≡ 6 (mod 5) has two, 1 and 4. and there are two solutions modulo 15 ...

  9. Multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_inverse

    In modular arithmetic, the modular multiplicative inverse of a is also defined: it is the number x such that ax ≡ 1 (mod n). This multiplicative inverse exists if and only if a and n are coprime. For example, the inverse of 3 modulo 11 is 4 because 4 ⋅ 3 ≡ 1 (mod 11). The extended Euclidean algorithm may be used to compute it.